
Infotech paper - version 6.doc 1/19

Development of Advanced Verification and Validation Procedures and Tools for
the Certification of Learning Systems in Aerospace Applications

Stephen Jacklin, Johann Schumann, and Pramod Gupta
NASA Ames Research Center

w

Michael Richard, Kurt Guenther, and Fola Soares
Dryden Flight Research Center

Abstract

Adaptive control technologies that incorporate learning algorithms have been proposed to
enable automatic flight control and vehicle recovery, autonomous flight, and to maintain
vehicle performance in the face of unknown, changing, or poorly defined operating
environments. In order for adaptive control systems to be used in safety-critical
aerospace applications, they must be proven to be highly safe and reliable. Rigorous
methods for adaptive software verification and validation must be developed to ensure
that control system software failures will not occur. Of central importance in this regard is
the need to establish reliable methods that guarantee convergent learning, rapid
convergence (learning) rate, and algorithm stability. This paper presents the major
problems of adaptive control systems that use learning to improve performance. The
paper then presents the major procedures and tools presently developed or currently
being developed to enable the verification, validation, and ultimate certification of these
adaptive control systems. These technologies include the application of automated
program analysis methods, techniques to improve the learning process, analytical
methods to verify stability, methods to automatically synthesize code, simulation and test
methods, and tools to provide on-line software assurance.

Key Words: verification, validation, certification, adaptive, control, learning

1 .O Introduction

Highly advanced adaptive control systems are needed to fulfill the present and future aerospace needs of
the nation. Adaptive control technologies that incorporate learning algorithms have been proposed to
enable automatic flight control and vehicle recovery, autonomous flight, and to maintain vehicle
performance in the face of unknown, changing, or poorly defined operating environments. For civil
aviation, adaptive control systems have been proposed that use learning to recover loss of vehicle control
due to sudden aircraft damage or component failure [l , 2, 31. For robotic applications, the ability to learn
gives adaptive control systems greater capability to adapt to changing mission requirements after
deployment. Adaptive control systems have virtually unlimited applications for NASA space exploration
applications, including mated flight vehicle coordination, docking, and control of autonomous robots,
flyers, and satellites [4, 51.

Because most of these applications are in safety-critical areas, it is obvious that adaptive control systems
?“.lit!? !earning systems wi!! never become par? of the future unless it can be proven that this software is
highly safe and reliable. Rigorous methods for adaptive software verification and validation must be
developed by NASA and others to ensure that control system software failures will not occur, to ensure
the control system functions as required, to eliminate unintended functionality, and to demonstrate that
certification requirements can be satisfied. To help bridge this gap, NASA and others are conducting
software reliability research aimed at developing usable procedures and methods to verify the reliability of
adaptive control system software employing learning algorithms.

*

Infotech paper - version 6.doc 2/19

The organization of the remainder of this paper is as follows: section 2 provide a cursory look at adaptive
control system architecture to identify the general structure. Section 3 will present some of the major
problems that arise in the use of learning algorithms for adaptive systems. In section 4, the major
procedures and tools presently developed or currently being developed to enable the verification,
validation, and ultimately certification of these adaptive control systems will be presented. These
technologies include the application of automated program analysis methods, techniques to improve the
learning process, analytical methods to verify stability, methods to automatically synthesize code,
simulation and test methods, and tools to provide on-line software assurance.

2.0 Adaptive Control System Architecture

Even though this paper is primarily aimed at addressing the problems of adaptive control systems with
learning algorithms, it is important to recognize that adaptive algorithms are in reality only one part of the
total control system. In nearly all cases, the adaptive controller itself must be controlled by a non-
adaptive, supervisory controller that interfaces to a human being and other systems. This larger program,
usually implemented using finite state automata, is called the outer-loop controller.

2.1 Outer-loop Control Architecture

Control systems for large aircraft and spacecraft are usually comprised of hybrid systems involving both
inner-loop and outer-loop control architectures (Figure 1). The outer-loop controller governs the
conditional execution o i the inner loop controllers. From a systems perspective, the outer-loop controller
generally represents the top-level executive program that coordinates a myriad of mission management
actions including providing a human-machine interface, health monitoring, tracking of vehicle
performance, navigation, guidance, and flight control laws to implement a variety of functions, perhaps
even implementation of autonomous flight control. Outer-loop control software is generally comprised of
finite state automata in which the sequencing of control tasks and multiple program threads is done
conditionally based on finite state logic

Aircraft Sensors 4 G:t::ngLi Flight Computer Real-time 1
(Executive) Displays Ground Control

Pilot Commands
Processor

Figure 1 . Outer-loop control architecture.

For example, the outer-loop controller logic of a jetliner control system might be programmed to issue pilot
warnings if the aircraft flight conditions (altitude, speed, other pilot inputs) are inconsistent with pilot
actions (e.g., flaps or landing gear in wrong position) [6]. This logic is called finite state logic because it is
implemented using only a discrete logic to represent the conditional status of the aircraft (e.g., “speed is
equal to or below maximum” is either true or false). The states are either achieved or they are not; there
is no in-between. Another good example of the outer-loop control logic is the kernel of an autonomous
agent used to operate a space craft, such as the NASA Deep Space 1 spacecraft [7]. In this case, the
outer loop controller uses a planner and a scheduler to decide when to sequence different program tasks.
Resources (e.g., motors, camera) are either free to use, or they are not (locked). The onboard logic must
ensure that the multiple program threads do not conflict with each other in the use of shared resources
and that the logic of the outer-loop controller does not create a situation from which there is no recovery.

.
I

Infotech paper - version 6.doc 3/19

2.2 Non-adaptive Inner-loop Control Architecture

Inner-loop controllers can provide very specific functions, such as providing vehicle flight control, stability
augmentation, or active vibration control. The term inner-loop control can be used to refer to feedback
loops controlling servo-actuators themselves. However, in the context of the present discussion, the
inner-loop controller is meant to refer to the system indicated in figure 2.

Control
Desired

Figure 2. Conventional (non-adaptive) feedback control system.

Most modern control
equations of the form

systems model the dynamics of this inner loop as a set of first-order, differential

dx
dt
- = A X + BLI

y = C x + D u

where x represents a vector of vehicle “states” to be controlled, u is a vector of control inputs, and y is a
vector of measurements [8]. For non-adaptive control, the A, B, C, and D coefficient matrices are fixed
parameters whose values are identified prior to operation. In this scheme, an error signal formed as the
difference between the desired state and measured state is fed to a controller that, if designed correctly,
generaies inputs to minimize the error signal. The most widely used controller of this type is the
Proportional Integral Derivative (PID) controller, due to its simplicity, performance and robustness. A PID
controller forms a control signal that is proportional to the error, proportional to the integral of the error,
and/or proportional to the derivative of the error:

The proportionality constants (Kp, KI and K,) are called the gains of the controller and are normally
vectors for multi-input, multi-output systems. Tuning the controller is a matter of finding the right gain
settings. If the gains are selected too large, the system will exhibit instability; yet if selected too low, the
system response may be too sluggish, or even unstable. Analytical methods for calculating stable gain
values (e.g., root-locus, Nyquist, Bode, Nichols) are well understood and have been widely used [8].

Although fairly simple to implement, PID and other types of conventional controllers unfortunately have
the limitation that once the controller is put into operation, the gains and system parameters do not
change. If the performance of the controller degrades after start-up, the only remedy is to stop the
system and re-tune the gains prior to resuming operation. Adaptive control systems have the advantage
of being able to adjust controller gains while in operation to avoid this problem.

2.3 Adaptive Control Architecture Using Learning Algorithms

. > Infotech paper - version 6.doc 4/19

Adaptive control systems with learning algorithms have been proposed to help aircraft maintain consistent
controller performance in the face of unforeseen events, such as sudden loss of a control surface or
gradual deterioration of control system components [2,9]. For example, if an airplane aileron ceases to
function, the aircraft may yet be controllable using the remaining working control surfaces and propulsion
sources. To do this automatically, an adaptive controller is required that can learn how the working
control surfaces can be used to fly the plane.

Figure 3 provides a notional diagram of an adaptive control system to illustrate two possible roles in which
learning can be used. First, a learning algorithm may be used to adaptively identify a transfer matrix
(stability derivative matrix) that relates the control inputs to the system outputs. The identified transfer
matrix can then be used in a minimum variance control law or LQG regulator [8] to achieve better system
performance in a changing flight environment. In this way, the learning algorithm effectively changes the
controller gain matrix. The system identification may be done in real-time (on-line) by a number of
learning algorithms (e.g., Kalman filter [lo], LMS [l 11 algorithms). [Ref 121 provides substantial detail of
the use of learning algorithms to reduce helicopter noise and vibration with this type of inner-loop
controller. Another way in which learning algorithms can be used is to directly compute control
commands to augment a non-adaptive (PID) controller. An example of this type of controller for an F-15
aircraft is presented in [13]. The controller uses a neural network to generate supplementary control
inputs to help the pilot fly the aircraft in the event of control surface failure or aircraft damage.

Control

Desired

Figure 3. Generic adaptive control system.

in oraer io be used on-iine, aii of the learniny aiyuiiihii;s upciaie a pievifius value oi the ideiiiified
parameters based on some learning error as follows

This is the learning update rule. Here, T, are the parameter values (e.g., transfer matrix row or neural
network weights) at step i and the “learning error” is typically computed as the difference between the
measured state (y) and the state predicted using the model parameters. KLearn is the adaptation learning
gain and it has a large effect on algorithm stability and learning convergence. All learning algorithms,
except the non-recuisivs ordinary leas? squares methcd, share ?his type of recursive !earning eqation in
one form or another.

* , ,

Infotech paper - version 6.doc 5/19

Over the years, many learning algorithms have been proposed, including the gradient descent, back-
propagation, Newton, Quasi-Newton, conjugate gradient, and Levenberg-Marquardt methods [lo, 141. The
algorithms differ in their search methods and the step length. For example, the gradient descent
algorithm uses a fixed step-length and makes parameter changes proportional to the steepest derivative
of change. Some algorithms (e.g., conjugate gradient) use the second derivative of the error with respect
to the weights (properties of the Hessian) to help optimize speed and convergence stability [15].

3.0 Learning System Verification and Validation Problems

The process of analyzing and checking the correctness of software is termed verification and validation
(V&V) [16]. This checking ensures the software functions as designed and meets the software
requirements. In order for software to be certified by the FAA under the standards presented in RTCA
DO-178B [17], the V&V process must be carefully documented and the behavior of the fielded software
must be the same as that evidenced during V&V testing. For this reason, and because there is no explicit
guidance in DO-1788 for adaptive systems, it is generally felt that certification of learning system
presents a major difficulty. However, as has been recently pointed out by Santhanam [18], adaptive
software will behave deterministically if given the same inputs and started with the same initial conditions.
The real verification and validation problems faced by learning systems is proving that the learning
process is convergent and repeatable, that the convergence rate is acceptably fast, and that the learning
process is stable.

3.1 Learning Convergence Problems

It is in general difficult to analytically evaluate the convergence of learning algorithms because the
adaptation process is stochastic and can change in an unpredictable manner over time. One reason for
this difficulty is that convergence is heavily influenced by the choice of initial conditions (of parameters
and tuning factors), by the degree of measurement noise, and by the actions of the controller.

For example, for the simple case of a single-parameter system, Figure 4 illustrates what could go wrong
when trying to search for the value of x that minimizes an error function. In this case, the learning
process converges to a local minimum because of the initial condition on x (point 1). Using steepest
descent learning, corrections are made proportional to the local gradient. In this example, the search
ultimately ends up at point 5, the local minimum. But, had the initial guess for x been to the right of the
global minimum, the right answer would have been found using the same process.

This dependency on initial condition poses a considerable problem for leaning systems, especially
considering that realistic system transfer matrices and neural networks used in modern control
applications typically have dozens of parameters. In fact, is not uncommon that these transfer matrices
and neural networks have more parameters than the actual number of degrees of freedom in the system
being controlled. In that case, many locally optimum learning solutions usually exist. Unless the learning
systems are initialized in exactly the same way each time, a formal guarantee that the system will
converge to the same solution each time may not exist.

Unfortunately, starting the learning process from the same exact initial conditions each time is not a
feasible solution. Adaptive controllers with learning algorithms will need to be restarted while the aircraft
or spacecraft is in flight, either during a system re-boot or when a pilot or intelligent agent decides to
enable adaptive control.

t

Infotech paper - version 6.doc 6/19

Error

Parameter, x

Figure 4. Convergence to local minimum instead of global optimum.

Another reason for lack of convergence is that the learning process may stop if the adaptive controller
successfully performs its intended function [12]. Long before the learning process completes, the
learning algorithm may be able to provide the controller with transfer matrix elements that, although not
strictly correct, are good enough to allow the controller to produce a control input that yields very good
control performance. If this happens, subsequent control inputs to the system will be almost identical,
since there is no reason to change the control if performance is good. However, the presence of
measurement noise on the sensor inputs makes the measured vehicle (feedback) state appear to be
changing. As a result, the learning algorithm may identify a system transfer matrix that only relates the
very small changes in control to the measurement noises. This tends to produce a null matrix of identified
system parameters if left alone. Ad hoc methods to fix this problem include shutting off the learning
process at intermediate times, or adding persistent excitation [12] to the control commands for the sake of
improving the learning process. Such ad hoc fixes, however, are very difficult to analytically verify and
validate.

3.2 Speed of Learning Convergence

Lack of sufficient learning convergence rate is another problem faced by adaptive systems, and is closely
coupled with the problem of stability discussed below in section 3.3. Even if learning algorithm
convergence can be assured, the learning process must happen in a sufficiently short amount of time in
order to be useful. A learning system used to fly an aircraft must yield productive learning in as little as a
few seconds.

Convergence time is a iunciion of both how iong it takes the iearning aigorithm to perform the numerical
computations of one iteration cycle, and the number of iterations required for convergence. In the not too
distant past (~ O ’ S) , only computationally efficient algorithms like the Kalman filter or steepest descent
gradient search could be entertained for application to real time systems. The advent of high-speed
computational capability allows a wider variety of learning algorithms to be considered, some of which
may produce more learning per iteration.

In general, there are no analytical or formal methods available to guarantee that a learning algorithm will
converge to a solution within a given amount of time, unless various assumptions are made about the
initial conditions and system dynamics. These will be addressed in section 4.2 below.

3.3 Learning Algorithm Stability Problems

One of the most important problems of adaptive control systems is finding an update method that
provides stable, yet sufficiently fast learning. Conventional (non-adaptive) controller designs of the type

. t

. . Infotech paper - version 6.doc 7/19

shown previously in Figure 1 become unstable when the control gains are made too high. In that case,
the controller commands serve to over-correct the system repeatedly, so that the control commands
oscillate wildly.

Over the last half of the twentieth century, a variety of analytical methods were developed to aid control
system designers in the selection of stable controller gains for non-adaptive systems. These methods
include the root locus method, Bode method, Nyquis plots, and Nichols chart techniques. Given a
mathematical representation of the system, these methods find the region where the controller gains
produce stable performance and also indicate the approximate highest gains allowed for fast, yet well-
damped, dynamic response.

The stability of the learning (system identification) algorithms are equally important. Incorrect learning of
the system model parameters can lead to control system instability. If the identified parameters are used
to generate corrective control actions, a failure of the learning algorithm can lead to large fluctuations in
the control outputs, and possible loss of control.

3.4 Knowing When Not to Use a Learning Control System

As a last thought toward the problems of learning systems, it should be mentioned that sometimes
learning systems are proposed for application where less exotic control system technology will work
better. For example, gain scheduling [19] is a classical control technique often employed to offer partial
adaptive capability, while avoiding many of the problems associated with learning systems. To implement
this scheme, a number of controller gain sets are determined (off-line) for a finite number of operating
conditions or aircraft configurations. The flight control computer is then programmed to select the correct
gains based on the current flight condition (airspeed, altitude, etc.). Interpolation between gain sets
offers some additional adaptivity, but may not work well in highly nonlinear control situations or for
unanticipated operating conditions. This method has been successfully utilized in many aerospace
applications. The success of the gain scheduling method depends on the degree to which the system
operates in discrete, well-defined operating regimes.

A problem is knowing when and when not to use a learning system. They are best applied in applications
where it is impossible to predict in advance the exact nature of the system dynamics to be controlled.
Good examples of these systems are robotic applications that require identification of changing mass
moments of inertia, spacecraft that need to learn in landing or docking situations, or aircraft control
systems that must respond to damage or unexpected operating environments.

4.0 Verification and Validation Procedures and Tools for Learning Systems

Satisfying the certification requirements for adaptive control systems will likely necessitate the application
of several tools and verification methods. In this section, some of the methods and tools for the
verification and validaiion of adapiive coilirol sysieriis are presented. It shoiild be iiientioned a: the
outset that this body of knowledge is in no way felt to comprehensively cover all means available. The
verification and validation of adaptive control systems and learning algorithms is still very much an active
areas of intense research, so much so that it is in no way possible to reference all existing tools and
methods rapidly being developed. These tools and techniques include the application of automated
program analysis methods, techniques to improve the learning process, analytical methods to verify
stability, methods to automatically synthesize code, simulation and test methods, and tools to provide on-
line software assurance.

4.1 Tools for Automated Static Analysis

Although not limited to learning systems, automated static analysis tools have been developed to
automatically inspect code for a number of bad programming practices and simple programming errors.
Examples of such mistakes include use of undeclared variables, use of un-initialized variables, out-of-
bound array referencing, wrong input of formal parameters in subroutine calls, use of inconsistent data

Infotech paper - version 6.doc 8/19

type, and performing mixed-mode computations. A rich body of checklists, coding standards, and
literature about this topic has been published [20]. Code review also examines the code to verify that
comments are well used throughout and that the program contains no dead or unreachable code.

Static analysis tools analyze every instruction in the source code to determine if the operations performed
in that instruction can create a problem at runtime. These tools can efficiently detect a wide range of
problems even before unit testing including: buffer overruns, un-initialized variables, arithmetic overflows
and underflows, and unreachable code. The advantage of static analysis methods is their ease of use.
Static analysis programs are used in much the same way an ordinary compiler is used to compile a
program. These methods can save many hours of human code review and can therefore provide
substantial cost savings. However, a continuing challenge is the development of static analysis methods
that detect only real problems (not false alarms).

There are several static analysis tools available, for example Coverity [21], PolySpace [22], Parasoft [23],
Clint, UNO [24], and CGS 1251. All of these tools analyze the source code, without actually executing it.
The source code does not need to be modified or instrumented. Results of the analyses are usually
displayed in a user-friendly way and the results are usually quickly available. For example, CGS (used for
Deep Space 1, Mars Pathfinder, and Mars Exploration Rover (C) code, was able to check hundreds of
thousands of lines of spacecraft computer code in less than a half hour.

4.2 Analytical Methods to Improve Learning Convergence

Perhaps the most difficult verification task is to prove that the learning algorithm of an adaptive control
system converges to the global minimum under all operating conditions. Even more difficult than this is
the problem of knowing what methodology can be used to improve learning performance in the event the
learning convergence is discovered to be unsatisfactory. In this section, methods to improve learning
convergence are discussed, primarily in the context of neural network weight identification.

Attempts to improve the convergence of learning algorithms have concentrated on the selection of better
energy functions and selection of variable learning rate and momentum [26,27,28,29,30]. Some
benchmarking fast learning algorithms have been derived in the literature [31,32,33].

The most commonly used method is to reduce the weights on past inputs and outputs [33]. This
mechanism is called weight decay by adding a term to the optimizing function that is the sum of the
squares of the weights such that during training, this term penalizes older weights. As example the use of
magnified gradient function in back-propagation (BP) can effectively speed up the convergence rate by
solving the flat-spot problem [14]. This change of the gradient of the activation function improves the
convergence of the learning process by preventing the error signal from dropping to a very small value.

Since the back-propagation (BP) algorithm [34] based on an iterative gradient algorithm to minimize the
mean square error (MSE) between the desired outputs and the actual outputs for the particular inputs to
neural networks was proposed many years ago, it has been successfully applied to many areas of
science and engineering. In addition to the BP algorithm, various learning rules have been proposed for
training of various types of neural networks [35,36,37,38,39]. In developing training algorithm for neural
networks, optimization algorithm has played an important role. Indeed, the realization of the training of
multilayer feed-forward neural networks (MLFNNs) has led to the introduction of a plethora of first- and
second-order algorithms in the neural networks literature [36]. In the former case, the representative
algorithm is based on the standard steepest descent iteration of the form employed in the back-
propagation algorithm. The steepest descent (SD) method works fine for very simple models, but requires
an extremely long time for convergence. On the other hand, Gauss-Newton (GN) and Levenberg-
Marquardt (LM) methods, which are generally cited as representative second-order techniques, have
been utilized for the learning algorithms. It is well-known that these methods have quadratic convergent
property for the initial guesses.

Infotech paper - version 6.doc 9/19

However these algorithms often fail to converge unless the initial estimation is sufficiently close to the
solution. Furthermore, it is difficult to guess a good initial point to avoid sticking at a local minimum even
if the neural network size is of only several neurons. To overcome this convergence problem, homotopy
methods have been studied in the literatures [40,41,42]. The homotopy methods have been proposed to
efficiently find out the multiple solutions for the nonlinear algebraic equations. Furthermore, homotopy
methods which have globally convergent property, are well-known in the field of circuit simulation [43,44].
Homotopy methods define mappings from the given problem for which the solution is desired, and these
mappings define “paths” to the desired solution. In other words, the homotopy methods trace the solution
path for a problem and find multiple solutions lying on the paths. The homotopies are classified in two
classes such as “Fixed-point homotopy” and “Newton homotopy”. Fixed-point homotopy method a wider
convergence property for the initial guess problem in the learning algorithm compared with the Newton
homotopy method [42].

Reducing the number of iterations and speeding the learning time of multi-layered perceptrons (MLP) are
appealing subjects of research [45,46,47,48,49,50]. In [45], the authors have proposed a new fast
algorithm based on a modified form of the conventional BP algorithm. It consists of minimizing the sum of
the squares of linear and nonlinear errors. In order to increase the convergence speed of the SBP, Abid
proposed using a combined norm in the optimization criterion. This is a new fast algorithm for training
neural networks based on a new criterion combining the squared and the fourths errors. The convergence
of the new Mixed Least Square and Least Fourth (MLSLF) algorithm requires less iterations than the SBP
and provides better generalization. Comparing to the BP, the MLSLF needs one more tuning parameter p
that governs the learning speed and can cause the divergence in case of bad choice. It is very important
to develop the theory to find rules that help to choose this factor. It will be also important to compare the
performances of this new algorithm with other fast algorithms like the Modified Back propagation
algorithm [45], Recursive Least Square algorithm [49] and the Marquardt algorithm [48].

A sparse gradient algorithm has been proposed in [51] to modify the cost function as the sum of the MSE
and a penalty term of the weight vector with an adaptive regularization parameter, which shows the
asymptotic convergence of the penalty sequence to zero [52]. Evidently, fast convergence depends
heavily on whether the algorithm can pre-select a good working set. When selecting the working set, it is
desirable to select a set of variables such that these points are support vectors after training process [53]

Since research has been directed mostly towards developing efficient structures up till now, considerable
attention has not been paid to the major influence of the learning algorithm on a training procedure. The
Back Propagation Through Time (BPTT) I461 has been used for training this kind of network [55,56] due
to the fact that it is a well established and easily applicable optimization method. However, the BPTT
exhibits certain disadvantages, such as: 1) it shows a low speed of convergence, 2) most often it
becomes trapped to local minima of the error surface. Mastorocostas [57] introduced a means for
measuring the speed of convergence and the robustness of the algorithms, the average and the standard
deviation of the iterations required to attain a MSE level for the testing set.

OyaR [54 has proposed data classification applications to improve the cenvergence rate o! ?he poin?wise
MSE and leads to higher prediction accuracy. Oyan proposes a relaxed model of variable kernel density
estimation and studies how it performs in data classification applications. The most important feature of
the relaxed model is that we can make the convergence rate of the pointwise MSE approach order O(n-
l), regardless of the dimension of the data set.

4.3 Anaiyticai Meinods io verify Learning Aigoriinm Siabiiiiy

As mentioned above, the learning gains have a marked influence on learning performance. Although
higher learning gains tend to increase the speed of learning, high gains also tend to promote instability of
the learning algorithm. Certainly, it is possible to verify the suitability of a particular learning gain through
simulation at a given operating condition (see section 4.6). The problem with this approach is that
defining the stability boundaries of a multiple-input, multiple-output adaptive control systems can require
many test points at each of many possible operating conditions. For this reason, analytical methods that
can determine learning system stability are needed.

Infotech paper - version 6.doc 10/19

The concept of adaptive control system stability applies to both the outer-loop and inner-loop control
software. Verification of outer-loop adaptive controller stability can be done by a variety of methods.
Although the outer-loop control behavior of most adaptive control systems is nonlinear, one approach is
to approximate the system with a linear representation and then apply the stability methods used to
analyze linear system stability. Of course, the modeling assumptions made to perform this step introduce
a level of error into the system. Moreover, the learning process of the inner-loop controller must be
frozen or fixed when this is attempted, because the coupled behavior of the inner and outer loop
controllers is always nonlinear [8]. Given these significant limitations, the methods of Bode, Nyquist, Root
Locus, Ruth Hurowitz, or Nichols can be used to determine the stability of the adaptive system as a
function of the controller gains.

Alternatively, the outer-loop controller stability can be analyzed as a nonlinear system if the control
system is relatively simple. Two popular techniques are the phase plane and describing function
approaches. The phase plane method provides a graphical representation of the system state by
computing state trajectories in a two dimensional plane called the phase plane (typically, velocity versus
displacement plots). [59,60,61,62] The phase plane approach has been used to analyze stability in
biomedical, orbital mechanics, vacuum tube circuits, and dynamic vehicle control applications. The major
disadvantage of the phase plane analysis method is that the two-dimensional, graphical approach is
cumbersome to apply to multiple-input, multiple-output systems. The other method, the describing
function (DF) method, can be used to determine the necessary and sufficient conditions for the nonlinear
feedback system stability. The describing function utilizes Fourier input-output analysis to find an
“equivalent gain” of the nonlinear system in the frequency domain. Describing functions are most
generally used for single-input, single-output feedback systems, although there have been
generalizations to multiple-input multiple-output systems. 159,631. The phase plane and describing
function methods have been used to anajyze the outer-loop stability of the shuttle flight control system
during orbiter repair maneuver and to examine Space Shuttle control system stability using a flexible
robotic arm. [4,64]

Analytical verification of the inner-loop (learning or system identification) stability is very important for
hybrid systems because instability of the inner loop dynamics can cause the outer loop control to become
unstable as well. Generally, stability analysis of learning systems falls into either an analysis of the inner-
loop learning algorithm, or for the hybrid system as a function of the learning update rule with the outer-
loop controller gains held fixed. Each method will be briefly described.

One approach of analytically verifying the stability of the inner-loop controller is to directly analyze the
learning rule update equation to mathematical determine the sufficient conditions for stability. In [12], the
stability of the Kalman filter, generalized Kalman filter, LMS filter, and generalized LMS filters are
analyzed in this manner. Although the analysis presented therein provides insight into the factors
governing stability, these factors are a function of the input covariance matrix, which is generally an
unknown quantity in most on-line applications.

Some progress has been made finding stable learning update rules for adaptive systems using
Lyapunov’s second method [65,67] Lyapunov analysis is difficult to apply to realistic aerospace
applications, but it is attractive because it can be used to find regions of learning system stability without
knowledge of the exact solution. Application of Lyapunov’s second method to a neural network learning
algorithm of an adaptive flight control system is described in [65].

The Lyapunov method is based on an energy analysis of the system. Basically, if it can be shown that
the total system energy as a function of time is either constant or decreasing, the system is stable. For
this to be true, sufficient care must be taken when defining the system under study. If stable, the results
of Lyapunov analysis show that the errors between the desired and actual outputs of the learning systems
are ultimately bounded. However, the ultimate bounds on the error as well as the time required to
achieve these bounds can’t be explicitly calculated from the theory.

4.4 Testing and Simulation Tools for Learning System Verification

I
I

Infotech paper - version 6.doc 11/19

Since analytical determination of stability, convergence, and performance is often difficult to apply,
computer-based simulation plays a major role in the verification of learning systems. Many aspects of
adaptive systems learning, in particular convergence and stability, can only be analyzed with simulation
runs that provide enough detail and fidelity. For example, a stuck rudder on an aircraft cannot be
expressed as a linear model since the failure introduces a bias. Simulation provides a fairly rapid way to:

0

0

0

0

0 determine stability boundaries
0

0

0

evaluate and compare different learning algorithms
find good control and learning rule update gains
determine how much learning is actually accomplished at each step
evaluate the effect of process and measurement noise on learning convergence rate

test algorithm execution speed on actual flight computer hardware
conduct piloted evaluation of the learning system - while in the simulator
simulate ad hoc techniques of improving the learning process, such as adding persis 3n
excitation to improve identification, or stopping the learning process after error is less than a
specified error or after a specified number of iterations.

Simulators differ primarily in the fidelity with which the plant is modeled. Higher fidelity simulations require
more complicated mathematical models of the adaptive system and also greater use of actual (and
expensive) controller hardware. In order to be cost-effective, the lowest fidelity test bed should be used
as much as possible. The behavior of simple linear models should be compared to that of higher fidelity
nonlinear models when they are available to ensure that analysis performed using the linear model still
applies. Table 1 presents one representation of the simulation hierarchy from lowest to highest fidelity.

The lowest fidelity simulations are usually run on a desktop computer using user-friendly simulation tools
in the Matlab/Simulink [67] environment. This simulator typically includes the control laws and a linear
plant which accounts for the aircraft aerodynamics, mass properties, and thrust from the engines. Models
may include some uncertainties or perturbations. The linear simulator is most often used in early control
law design and analysis or to calculate linear gain and phase margins. It is important to note that
nonlinear adaptive controllers can be represented linearly, but the linear model may not provide results
with the required accuracy. Changes to the plant model can be simulated by changing the system transfer
function from one matrix to another with varying frequency. By varying the amount of change, the stability
boundaries of the system can be determined. Concomitant with this process is an evaluation of the
system tuning parameters that are used in the learning algorithm. The desktop simulation environment
provides a quick way to compare different learning algorithms and controller architectures. Only the most
promising designs need be simulated using higher fidelity simulations.

The next level of simulation provides additional fidelity by incorporating important model nonlinearities.
Adaptive controller nonlinearities are common, and therefore must be evaluated in nonlinear simulation.
This simulation is typically run on a workstation computer to handle the more intensive numerical
operations. The additions! cornp!exi!p of the nonlinear sirnulatior! a!!cws detailed modeling of sensor inpgt
uncertainties, actuator dynamics, and assessment of adaptive controller performance and stability. Inputs
to the controller can come from a “pilot” in the loop, but more commonly from a predetermined set of
inputs, typically impulses, steps, doublets, or frequency sweeps. Obviously, the time spent to develop
realistic aeroelastic and aerodynamic models is only justified after low-level simulation verifies that the
basic learning system is sound.

Higher fidelity test beds, like software-in-the-loop, hardware-in-the-loop, and aircraft-in-the-loop
simulations, contain a combination of software models and hardware. These software simulations
typically run in dedicated computing environments with a cockpit and out-the-window graphics (e.g., see
[68,69]). Typically they contain software models of nonlinear aerodynamics, engine dynamics, actuator
models, and sensor models. The most common elements of these test beds are some of the flight
processors, communication buses and a cockpit. The aircraft-in-the-loop simulator maximizes the use of
flight hardware components and minimizes the number of software models. Using the actual
aircrafVspacecraft flight computer is a particularly important advantage of this simulation, since all

Infotech paper - version 6.doc 12/19

Desktop Computer

computers tend to handle exceptions differently and may have differences in their numerical routines.
Either the actual aircraft may be tied into the nonlinear simulation, or an iron-bird aircraft may be used to
provide actuators, sensor noise, actual flight wiring, and some structural interactions. These test beds
allow for a complete check out of all interfaces to the flight hardware, timing tests, and various failure
modes and effects analysis (FMEA) testing, which is not possible in a simpler configuration.

Low Low Linear simulation using Matlab or Simulink

Simulators that include a cockpit to interface with the pilot can either be fixed-based or motion-based.
Fixed-based simulators have nonmoving cockpits and usually include out-the-window graphics. The
moving cockpit of motion-based simulators additionally provide the pilot with some of the physical cues of
actual flight. Piloted simulation is an important part of verification and validation testing of flight control
software.

Work Station

Simulator

Simulator Hardware -in-the
Loop

Simulator with Aircraft-ln-
the-Loop

Motion-Based Simulator

Low Low to Med Models that include nonlinearities

Low Medium Dedicated aircraft model and hardware

Medium to High

High Medium to Simulator with actual flight computer and

High High Nonlinear simulation with moving cockpit

Medium to
High

High ground-based aircraft

Actual aircraft target flight computer and cockpit

4.5 Tools to Improve Simulation Coverage

A problem encountered in performing simulation is providing adequate test coverage. Coverage
concerns the percentage to which 1) every decision in a program has been executed at least once, 2)
every decision in the computer program has been taken with all possible outcomes at least once, 3) every
condition in a decision in the program has taken all possible outcomes at least once, 4) every condition in
a decision has been shown to independently affect that decision’s outcome, and 5) all entry and exit
points of the program have been tested [70]. Merely running a collection of simulation test cases may
discover some problems, but can’t guarantee the absence of problems. In order to help simulation
achieve greater coverage, various tools and methods are being developed to implement simulation in a
more systematic manner.

In one such effort, the Automated Neural Flight Controller Test (ANCT) [71] tool is being developed in the
MATLAE emrircnment. ANCT has been designed !c! he!p tes? engineers evalua?e different flight
conditions, quantify performance, and determine regions of stability. It is equipped with a graphical user
interface that allows the engineer to specify input parameters, minimum and maximum values, step
increments, and success/failure requirements. ANCT uses MySQL for storage and management of the
test cases, input data, and output data. ANCT is designed to analyze a MATLAB/Simulink model by
simulating the model using all possible combinations of the model inputs parameters. By introducing
random numbers into the test inputs and parameters, the user can periorm ivionie simuiatioii io
estimate the sets of model parameters and inputs that correspond to the system responses that are of
interest. Based upon user input, ANCT creates the test cases and evaluates the time-series outputs
during a specified time or condition window by using a user-specified output evaluation function. This
process yields a performance score that represents the degree to which an output violates user-defined
criteria or failure criteria, and includes a PasdFail status vector of the outputs. ANCT also provides a
genetic algorithm to explore the ranges over which parameters and inputs are allowed to vary.

Infotech paper - version 6.doc 13/19

A simulation based robustness analysis tool, RASCLE (Robustness Analysis for Control Law Evaluation)
has also been developed to help explore combinations of learning system parameters and operating
conditions [72]. The RASCLE simulation tool is used to interface with existing nonlinear simulations and
incorporates search algorithms to uncover regions of instability with as few runs as possible. RASCLE
uses a gradient algorithm to identify the direction in the uncertainty space along which the stability of the
system is most rapidly decreasing. RASCLE provides an intelligent simulation-based search capability
that can be used in Monte Carlo simulation evaluations [73].

4.6 Model Checking Methods for Learning Systems

Over the last decade, the formal method of model checking has become an important tool for the
verification of finite state automata. Many types of model checkers have been proposed, for example
explicit state model checkers (e.g., SPIN, JPF, JPF2), symbolic (e.g., SMV, NuSMV), and hybrid model
checkers [74,75,76]. Most of these techniques require that a model of the actual control program be
written in a special language of the model checker, although some model checkers do not have this
restriction [77]. Once a finite state model of the program has been developed by using a logical
abstraction method, the model checker can test all possible executions paths of the program and report
any execution that leads to a violation of a user-defined property. Model checkers can find errors that are
almost impossible to find by human code review.

Model checkers have found considerable application for outer-loop adaptive control system verification.
They have been useful for verification of autonomous systems such as NASA’s Remote Agent and K9
Mars Rover [78]. The outer-loop controller of these programs uses a planner and scheduler to coordinate
the actions of multiple program threads that execute in parallel. As pointed out in [79], the program
threads may sometimes interact in unexpected ways or conflict with each other in the use of shared
resources. Traditional, scenario-based testing may never discover some bad thread interaction
sequences if they occur infrequently or only under circumstances not envisioned by the test team. The
use of these formal methods allow complete verification of every possible program execution path and
can verify the programs are free of the most severe problems in multi-threaded programs, including
thread deadlocks and data races. As an aviation example, the NuSMV model checker has been used by
Rockwell Collins to provide verification of the mode logic of the FCS 5000 flight guidance system being
developed for use in business and regional jet aircraft [80]. In this testin NuSMV was used to check
models (consisting solely of Boolean and enumerated types) with over 10 reachable states in less than
an hour.

*??

For the most part, model checking does not lend itself well to verification of inner-loop control and
learning or adaptation. The reason is that these processes are generally modeled as continuous
systems, rather than as finite state automata. Nevertheless, some recent progress has been made
attempting to apply the technique of hybrid model checking to continuous systems. Ref [81] describes an
application of Java PathFinder to the control of a robotic vehicle. The vehicle dynamics are modeled in
the time domain as a set of first order differential equations (Eq. 1 applies here.) The execution of the
inner-ioop coniroiler is controlled by 8fi Outei-loOp aiitoiioi;;oi;s agent planne: and schedule:. Al?hwgh
the continuous variables (x , u , y) could assume an infinite number of values, and thereby presenting a
state explosion problem for the model checker, the use of Java PathFinder is made possible through
representing theses values as discrete quantities. The use of an approximation function converts the
continuous variables into discrete values. The idea is similar to rounding a decimal number to the nearest
integer. only in this case, the truncation is considerably coarser. With this abstraction of the continuous
space, the variables can be made to take on relatively few values. This allows for the recognition of
previous “states” in the model checking sense of the word, and hence an exploration of the continuous
model checking space becomes possible. Of course, this search is exhaustive only to the extent the
approximation function is valid. If the approximation function is too coarse, important states will likely be
missed.

4.7 Program Synthesis Methods for Certifiable Code Generation

Infotech paper - version 6.doc 14/19

With very few exceptions, the software development cycle transforms software design specifications into
code by a manual process that is then verified by code review, unit testing, functional integration testing,
and validation [16]. Ultimately, if the code is for a civil aviation application, certification approval of the
software may be sought. Proving adequate coverage of the learning system can be a particularly difficult
aspect of the certification process.

As an alternative to this development approach, a number of software vendors are now proposing a
number of tools that can help to produce certifiable code, including code for learning systems. It is
important to understand at the outset that none of these tools can produce certified code, because
airborne software is certified only as part of the verified and validated avionics package for a particular
aircraft. For this reason, software produced by these tools must still undergo a certification process to
meet RTCA DO-1788 standards. Nevertheless, these tools produce code that has a much higher chance
of passing certification requirements.

AutoFilter is a tool being developed at NASA to automatically generate certifiable Kalman Filter code from
high-level declarative specifications of state estimation problems [82]. Although Kalman filters are widely
used for state estimation in safety-critical systems, the complex mathematics and choice of many tuning
parameters make implementation a difficult task. The AutoFilter tool not only generates Kalman filter
code automatically from high level specifications, but also generates various human-readable documents
containing both design and safety related information required by certification standards such as DO-
1788. Program synthesis is accomplished through repeated application of schemas, or parameterized
code fragment templates and a set of constraints formalizing the template's applicability to a given task.
Schemas represent the different types of learning algorithms. AutoFilter applies rules of the logic
backwards and computes, statement by statement, logical formulae or safety obligations which are then
processed further by an automatic theorem prover. To perform this step automatically, however, auxiliary
annotations are required throughout the code. AutoFilter thus simultaneously synthesizes the code and
all required annotations. The annotations thereby allow automatic verification and produces machine-
readable certificates showing that the generated code does not violate the required safety properties.

Eurocopter has used the Safety Critical Application Development Environment (SCADE) tool to
automatically generate certifiable auto-pilot software for the EC135 and ECl55 helicopters [83]. To use
the SCADE tool, the user must describe the auto-pilot using precise formal specifications and rules for
naming and structuring (Lustre language). The tool incorporates a model checker (Design Verifier) to
provide extensive code coverage according to the formal specifications. SCADE generates readable and
traceable C or Ada code for the auto-pilot and also automatically generates documentation useful for
certification purposes.

Another type of code synthesis is performed by auto-coders of such simulation programs as the
Mathworks Matlab and Simulink [67]. As stated above, these desktop simulation programs allow rapid
development of learning system simulations by providing the use with a convenient visual programming
interface. Mathworks offers an autocoder tool in its Real-Time Workshop to translate the symbolic
FiOgiSKiming language ssen on the desk?=? to actaal real-time application code, usua!!y in C or Ada. To
help verify the code generated by this program, Mathworks has incorporated runtime memory-checking
tools, such as Rational's Purify; coverage tools, such as Rational's Purecoverage; and static analysis
tools, such as Lint. In addition, a code coverage analysis capability built into the Target Language
CompilerTM (TLC) helps verify that the TLC files responsible for converting the model to generated code
are thoroughly tested. To help improve code traceability to requirements, automatically hyperlinks
between the generated code and the biocks from wnicn ii was generated are produced. Auiomaticaiiy
generated code from Mathworks tools has been certified for use on safety-critical projects such as
Honeywell's Commercial Aviation Systems Primus series avionics systems.

In a desire to develop reliable software tools for safety-critical applications, Boeing has elected to use a
subset of the Ada programming language, called Zbra [84]. Boeing defined this subset based on its
experience with safety critical systems, and language and tool construction issues that make commercial
compilers too complex to certify. One of the most significant features of the Zbra compiler is its built in
anomaly checker that looks for a number of error-prone coding patterns, such a use-before-set, no-use-

Infotech paper - version 6.doc 15/19

after-set, static conditions that render parts of code unreachable, and loops whose exit conditions are
loop-invariant. Aside from eliminating many real-time problems found in most C code (e.g., pointers),
Zbra was also developed to produce code that is cleaner and more traceable. This was done to make the
certification process easier.

4.8 Tools for On-line Software Assurance

As mentioned previously, learning systems may be used to identify transfer matrices and neural networks
whose number of adjustable parameters greatly exceeds the true system degrees of freedom. Although
this may sound like a strength, it is actually a weakness because it makes it difficult to know whether the
learning process has locked one of many locally optimal point solutions, or the actual globally optimum
solution. Although the techniques of model order reduction or pruning [47] could be used to reduce the
modeling degrees of freedom, and hence the number of possible solutions, the understanding of the
physical system is rarely available to do this. Transfer matrix elements or neural network weights found
to be near zero at one test condition or scenario, may be highly important at others. For this reason,
research is being performed to develop tools to assess the on-line performance of the learning
algorithms.

As one approach to this problem, NASA Ames Research Center has developed a tool called the
Confidence Tool to analyze the probability distribution of the neural network output using a Bayesian
approach [85]. This approach combines mathematical analysis with dynamic monitoring to compute the
probability density function of neural network outputs while the learning process is on-going. The
Confidence Tool produces a real-time estimate of the variance of the neural network outputs. A small
variance indicates the network is likely producing a good, reliable estimate, and therefore, good
performance of the neural network software can be expected. The confidence tool can be used for pre-
deployment verification as well as a software harness to monitor quality of the neural network during
flight. The outputs of the Confidence Tool can be used as a signal to stop and start neural network
adaptation and also be used (with modification) to provide a guarantee of the maximum network error for
certification purposes. A strength of the Confidence Tool is that it can be used to verify convergent
learning and yet only requires the specification of two tuning parameters that are easily computed based
on some preliminary information about the system process and measurement noises. A weakness of the
tool is that it cannot distinguish between local and global learning solutions.

Rule extraction schemes have been proposed as a means to determine if non-adaptive neural networks
(trained before operation) provide a globa!ly optimum solution. Such methods include NNRules, M-of-N
Rules, KT, Rulex and others [86,87,88]. To apply the rule extraction method, the data set used to train
neural network is also used to develop a set of mathematical “if-then” rules to describe the functioning of
the neural network. These rules are basically of the type

IF condition 1 AND condition 2 AND condition 3 THEN RESULT

where the conditions are queries that produce a yes-no, true-false result (e.g., airspeed less than 100
kts?) and the result relates something about the neural network (e.g., 0.5 < network weight(23) < 0.7).
These rules, in essence, define the globally optimum solution based on the current training data set. The
idea is that once the fixed neural network is placed into operation, data collection can continue to see if
the rule set is still adequate to describe the network. If it is, assurance of a globally optimum solution can
be generated. The collection of such data may be useful for certification purposes. The weakness of the
rule extraction approach is that it is not useful to judge the performance of neural networks that adaptively
learn while in operation to respond to new environments and system uncertainties.

Concluding Remarks

The FAA certification requirement to show that learning software programs meet their intended function,
do not negatively impact other systems or functions on the aircraft, and are safe for operation, as pointed
out in RTCA DO-178B [17], involves more than just running a set of test cases. The complete verification
and validation of learning systems should not be viewed as running test cases and comparing expected

Infotech paper - version 6.doc 16/19

results to actual results because such testing can never reveal the absence of errors. The verification
and validation objectives must be satisfied by a combination of reviews, analyses, the development of test
cases and procedures, and the subsequent execution of those test procedures.

Simulation and methods to automate simulation remain very important tools, because at present only they
can really test and explore the most nagging problems of adaptive system verification, like algorithm
stability and convergent learning. And yet the fact that testing can never reveal the absence of errors is a
major shortcoming of this approach. Therefore, future progress toward certification requires that a
number of new tools such as the ones cited herein be developed to allow the ultimate certification of
adaptive control systems that use learning algorithms.

In all likelihood, a combination of analysis, tools, and simulation will be needed to fully address the full
aspect of the certification problem for learning systems. Nevertheless, a relevant cautionary remark of
Heimdahl I891 made for the concept of N-version programming applies equally well here too: the
application of a combination of tools and analyses doesn’t mean success, because we don’t know how
much confidence we can put in N-tools and methodologies as opposed to one.

References

[l] Kaneshige, J., Bull, J., and Totah, J., “Generic Neural Flight Control and Autopilot System,” AIAA-

[2] Rysdyk, R. T., and Calise, A.J., “ Fault tolerant flight control via Adaptive Neural Network

[3] Nguyen, N.T., Bright, M.M., and Culley, D.E., “Feedback Adaptive Flow Control of Air Injection in
Compressors”, A I M Guidance, Navigation, and Control Conference, San Francisco, CA, Aug. 15-1 8,
2005.
[4] Hall, R., Barrington, R., Kirchwey, K. and Alaniz, A., “Shuttle Stability and Control during the Orbiter
Repair Manuever, AlAA Guidance, Navigation an dControl Conference and Exhibit, 2005, AlAA 2005-
5852.
[5] KrishnaKumar, K., Kaneshige, J., Waterman, R., Pires, C., and Ippoloito, C., “A Plug and Play GNC
Architecture Using FPGA Components,” Proceedings of lnfotech 6 aerospace Conference, Arlington, VA,
Sept. 26-29, 2005.
[6] Degani, A., Taming HAL, Designing Interfaces Beyond 2001, Published by Palgrave-Macmillan, 2004
[7] Deep Space 1 program is managed by NASA’s Jet Propulsion Laboratory.

[8] Franklin G, Powell J, Emami-Naeini A. Feedback Control of Dynamic Systems. Addison-Wesley

[9] Tomayko, J.E., edited by Gelzer, Christian, The Story of Self-Repairing Flight Control Systems, NASA

[lo] Ljung, L., System Identification: Theory for the user. Prentice Hall, Englewood Cliffs, NJ, 1987.
[I 11 Widrow, 5. and Stearns, S.D., Adaptive Signa! Processhg. Prentice-Ha!!, Eng!ewonc! C!iffs, NJ, 1985.
[12] Jacklin, S. A., “Comparison of Five System Identification Algorithms for Rotorcraft Higher Harmonic
Control,” NASA TP 1998-207687, May 1998.
[13] Kim, B. S. and Calise, A. J., “Nonlinear Flight Control using Neural Networks,” AlAA J. Guidance,
Control, and Dynamics, Vol. 20, No. 1, 1997
[14] Ng, S., Cheung, C., Leung, S., and Luk, A., “Fast Convergence for Back-propagation Network with
Magniiiea Graaieni Funciion,” Roc. of i i i E infer. joint Zonf on iieurai Networks (~ ~ C ~ V I Y ’ G ~ ~ , Poriiand,
USA, 20-24 June 2003, vo1.3, pp.1903-1908.
[15] Malki, H., Canelon, J., Shieh, L., and Jacklin, S. “Neural Network-Based Frequency-Domain Vibration
Modeling for Black Hawk Helicopter” AIAA-2004-1977 45th AIAA/ASME/ASCE/AHS/ASC Structures,
Structural Dynamics and Materials Conference, Palm Springs, California, Apr. 19-22,2004
[16] Jacklin, S.A., Lowry, M.R., Schumann, J.M., Gupta, P.P., Bosworth, J.T., Zavala, E., Kelly, J.W.,
Hayhurst, K.J., Belcastro, C.M., and Belcastro, C.M., “Verification, Validation, and Certification
Challenges for Adaptive Flight-Critical Control System Software,” AlAA Guidance Navigation and Control
Conference and Exhibit, 2004. Automated Reasoning, Lect. Notes Comp.

2000-4281.

Augmentation,” AlAA 98-4483, August 1998.

h t t p://www . j pl .nasa.gov/n e wdf act-s heets/ds 1 . pdf

Publishing Company: MA, 1994

Dryden Flight Research Center, 2003

E

Infotech paper - version 6.doc 17/19

[17] Software Considerations in Airborne Systems and Equipment Certification, Document No RTCA
(Requirements and Technical Concepts for Aviation) /DO-1 78B, December 1, 1992.
[18] Santhanam, V. “Can Adaptive Flight Control Software be Certified to DO-1788 Leve A?”, NASA and
FAA Software and CEH Conference, Norfolk, VA, July 26-28, 2005.
[19] Fromion, V., and Scorletti, G., “A Theoretical Framework for Gain Scheduling,” International Journal
of Robust and Nonlinear Control, 13(6):951-982,2003.
[20] Nelson, S. D., and Schumann, J. ‘What Makes a Code Review Trustworthy?”, Proceedings of 37th
Hawaii International Conference on System Sciences (HICSS-37 2004), 5-8 January 2004
[21] httD://www.coveritv.com
[22] httD://ww.DoIvsDace.com
[23] httD://www.uarasoft.com
[24] Holzmann, G.J., “Static Source Code Checking for User-Defined Properties,” Integrated Design and
Process Technology, IDPT-2002.
[25] Brat, G., and Venet, A., “Precise and Scalable Static Program Analysis of NASA Flight Software,”
Proceedings of the 2005 IEEE Aerospace Conference, Big Sky, MT, March 5 - 12, 2005.
[26] Jacobs, R.A., “Increased rates of convergence through learning rate adaptation,” Neural Networks,

[27] Weir, M.K., “A method for self-determination of adaptive learning rates in back propagation,“ Neural
Networks, vol. 4, pp. 371 -379, 1991.
[28] Yu, X.H., Chen, G.A., and Cheng, S.X., “Acceleration of backpropagation learning using optimised
learning rate and momentum,” Electronics Letters, Vol. 29, No. 14, pp. 1288-1 289, 8‘h July 1993.
[29] van Ooyen, A. and Nienhuis, B., “Improving the convergence of the back-propagation algorithm,”
Neural Networks, vol. 5, pp. 465-471, 1992.
[30] Ahmad, M. and Salam, F.M.A., “Supervised Learning Using the Cauchy Energy Function,”
International Conference on Fuzzy Logic and Neural Networks, 1992.
[31] Fahlrnan, S.E., “An empirical study of learning speed in backpropagation networks,” Technical report,

[32] Riedmiller, M., and Braun, H., “A direct adaptive method for faster back-propagation learning: The
RPROP Algorithm,” Proc. of Inter. Conf. on Neural Networks, vol 1, pp. 586-591, 1993.
[33] Treadgold, N.K. and Gedeon, T.D., “Simulated Annealing and Weight Decay in Adaptive Learning:
The SARPROP Algorithm,” /E€€ Trans. Neural Networks, vol. 9, no. 4, July 1998, pp.662-668.
[34] Rumelhart, D.E., Hinto, G.E., and Williams, R.J, “Learning representations by back-propagation
errors”, NATURE, ~01.323, 9, pp.533-536, Oct., 1986.
[35] Hagan, M.T. and Menhaj, M., “Training feedforward networks with the Marquardt algorithm”, IEEE
Trans. Neural Networks, vo1.5, pp.989-993, Nov., 1994.
[36] Battiti, R. “First and second-order methods for learning: Between steepest descent and Newton’s
method, Neural Computation, vo1.4, no.2, pp.141-166, 1992
[37] Ninomiya, H., Tomita, C., and Asai, H., “An Efficient Algorithm with Second-Order Convergence for
Myltilayer Neural Networks”, Proc.IEEE&INNS/IJCNN’03, July, 2003.
[38] Ninomiya, H. and Kinoshita, N., “A New learning Algorithm without Explicit Error Back-Propagation”,
ProclEEE&INNS/lJCNN’99, July, 1999.
[33] Ninomiya, H. ana’ Sasaki, A., “3-iayei Recurrent Neuial r4etiieiks aiid h i i Supewised Learning
Algorithm”, Proc.IEEE&INNS/IJCNN’Ol , July, 2001.
[40] Coetzee, F.M., “Homotopy Approaches for the Analysis and Solution of Neural Network and Other
Nonlinear Systems of Equations”, Doctoral Thesis, Carnegie Mellon University, May, 1995.
[41] Coetzee, F.M., and Stonick, V.L., “On a Natural Homotopy Between Linear and Nonlinear Single-
Layer Networks”, IEEE Trans. On Neural Networks, vol. 7, no. 2, pp. 307-317, March 1996.
[42] Tomita, C., Yashida, M., Ninomiya, H., and Asai, H., “Note on learning algorithm based on Newton
homotopy method for feedforward neural networks”, Proc. 2004 RlSP International Workshop on
Nonlinear Circuit and Signal Processing, pp.128-132, March, 2004.
[43] Yamamura, K., Sekiguchi, T., and Inoue, Y., “A Fixed-point Homotopy Method for Solving Modifyed
Nodal Equations”, IEEE Trans. Circuit & Systems - I , vo1.46, no.6 pp.654-665, June, 1999.
[44] Ushida, A., Yamagami, Y., and Nishio, Y., “An Efficient Algorithm for Finding Multiple DC Solutions
Based on the SPICE-Oriented Newton Homotopy Method’, IEEE Trans. CAD, v01.21, n0.3 pp.337-347,
March, 2002.

VOI. 1, pp. 295-307, 1988.

CMU-CS-88-162,1988.

I .

- Infotech paper - version 6.doc 18/19

[45] Abid, S., Fnaiech, F., and Najim, M., “A Fast Feed-Forward Training algorithm using A Modified Farm
of the standard Back Propagation Algorithm” IEEE Trans. Neural Network Vo1.12, No 2, March 2001.
[46] Abid, S., Fnaiech, F., and Najim, M., “Evaluation of the feedforward neural network covariance matrix
error”, IEEE International Conference on Acoustic Speech and Signal Processing (ICASSP’ 2000) June 5-
9, Istanbul, Turkey.
[47] Fnaiech, N., Sayadi, M., Fnaiech, F., Jervis, B.W. and Cheriet, M., “A Pruned Multilayer Neural
Network For Brain Diseases Classification”, Proc. of NNESMEDKIMED 03, July 2003 Sheffield, UK.
[48] Hagon, M.T. and Menhaj, M.B., ‘Training feedforward networks with the Marquardt algorithm” IEEE
Transactions on Neural Networks, Vol. 5, pp. 989, November 1994.
[49] Scalero, R. S. and Tepedelenglioglu, N., “A Fast New Algorithm for Training Feedforward Neural
Networks” IEEE Transactions on signal processing. Vol 40. No, 1, January 1992.
[50] Abid, S., Fnaiech, F., Jervis, B.W., and Cheriet, M., ” Fast Training of Multilayer Perceptrons with a
Mixed Norm Algorithm”, IJCNN 2005 Conference Proceedings, Montreal, Canada.
[51] Rao, Y.N., Kim, S.P., Sanchez, J.C., Erdogmus, D., Principe, J.C., Carmena, J.M., Lebedev, M.A.,
and Nicolelis, M.A., “Learning Mappings in Brain Machine Interfaces with Echo State Networks”, accepted
to ICASSP, 2005.
[52] Wang, Y., Kim, S., and Principe, J.C., “Comparison of TDNN Training Algorithms in Brain Machine
Interfaces”, IJCNN 2005 Conference Proceedings, Montreal, Canada.
[53] Yang, X., Song, Q., and Liu, S., “Pre-selection of Working Set for SVM Decomposition Algorithm”,
IJCNN 2005 Conference Proceedings, Montreal, Canada.
[54] Piche, S., “Steepest Descent Algorithms for Neural Network Controllers and Filters,” /E€€ Trans.
Neural Networks, vol. 5, no. 2, pp. 198-221, March 1994.
[55] Frasconi, P., Gori, M., and Soda, G., “Local Feedback Multilayered Networks,” Neural Computation,

[56] Tsoi, A.C. and Back, A.D., “Locally Recurrent Globally Feedforward Networks: A Critical Review of
Architectures,” If€€ Trans. Neural Networks, vol. 5, no. 2, pp. 229-239, March 1994.
[57] Mastorocostas, P.A., “A Constrained Optimization Algorithm for Training Locally Recurrent Globally
Feedforward Neural Networks”, IJCNN 2005 Conference Proceedings, Montreal, Canada.
[58] Oyan, Y., Ou, Y., Hwang, S., Chen, C., and Chang, D.T., “Data Classification with a Relaxed Model
of Variable Kernel Density Estimation”, IJCNN 2005 Conference Proceedings, Montreal, Canada.
I591 Atherton, D.P., Nonlinear Control Engineering, Describing Function Analysis and Design, Van
Nostrand Reinhold, London 1975.
[60] Blaquiere, A., Nonlinear Control Systems, Academic Press, New York, 1966.
[61] Gibson, J.E., Nonlinear Automatic Control, McGraw-Hill, New York, 1963.
[62] lnagaki S., Kushiro I., and Yamamoto M, “Analysis on Vehicle Stability in Critical Cornering Using
Phase-Plane Method,” JSAE Review, Vol 16, 1995.
[63] Gelb, A. and van der Velde, W.E., Multiple input Describing Functions and Nonlinear Systems
Design, McGraw-Hill, New York, 1968
[64] Penchuck A., Hattis P.,’Kubiak E., A frequency domain stability analysis for a phase plane control
system, Journal of Guidnace, Control and Dynamics, vol. 8, 1985 pp. 50-55.
[65] Yerramalla, S., Cukic, B., and Fuller, E., “Lyapunov Analysis of Neural Network Stability in an
Adaptive Flight Corrtrol System,”, Sidh Symposim on Self-Stabifbizing Systems, 2003.
[66] Yerramalla, S., Cukic, B., and Fuller, E., “Lyapunov Stability Analysis of Quantization Error for DCS
Neural Networks,” International Joint Conference on Neural Networks, Oregon, July 2003.
[67] MATLAB, software simulation tool from The Mathworks Inc. http://www.mathworks.com/products.
[68] Belcastro, Celeste, and Belcastro, Christine, “On the Validation of Safety Critical Aircraft Systems,
Part II: Analytical & Simulation Methods”, Proceedings of AlAA Guidance Navigation and Control
Conference, Austin TX, August 2003.
[69] Duke, E.L., Brumbaugh, R.W., and Disbrow, D., “A Rapid Prototyping Facility for Flight Research in
Advanced Systems Concepts,” IEEE Computer, May 1989.
[70] Hayhurst, K.J., Veerhusan, D.S., Chilenski, J.J., and Rierson, L.K., “A Practical Tutorial on Modified
Condition/Decision Coverage,” NASA/TM-2001-210876, May 2001.
[71] Soares, F., Loparo, K.A., Burken, J., Jacklin, S.A., and Gupta, P.P., “Verification and Validation of
Real-time Adaptive Neural Networks using ANCT Tools and Methodologies,” Proceedings of
lnfotech Q aerospace Conference, Arlington, VA, Sept. 26-29, 2005.
[72] Bird, R.: RASCLE Version 2.0: Design Specification, Programmer’s Guide, and

vOI. 4, pp. 120-1 30, 1992.

s‘ -
~‘ $ * Infotech paper - version 6.doc 19/19

User’s Guide. Baron Associates, Inc., February, 2002.
[73] Belcastro, Christine, and Belcastro, Celeste, ”On the Validation of Safety Critical Aircraft Systems,
Part I: Analytical & Simulation Methods”, Proceedings of AIAA Guidance Navigation and Control
Conference, Austin TX, August 2003.
[74] Holzmann, G. J., The Spin Model Checker Primer and Reference Manual, Addison-Wesley, Boston,
MA, 2004.
[75] McMillan, K., Symbolic Model Checking. Kluwer Academic Publishers, Boston, MA, 2003.
[76] Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F., “Model Checking Programs”, Kluwer
Academic Publisher, 2002.
[77] Havelund, K., “Using Runtime Analysis to Guide Model Checking of Java Programs,” SPlN Model
Checking and Software Verification, Vol. 1885 of Lecture Notes in Computer Science. pp. 245-264,
Springer, 2000.
[78] Giannakopoulou, D., Pasareanu, C., and Cobleigh, J., “Assume-Guarantee Verification of Source
Code with Design-Level Assumptions”, Proceedings of the 26th International Conference on Software
Engineering (ICSE’2004), Edinburgh, Scotland, May 2004.
[79] Artho, C., Havelund, K., and Biere, A., “High-Level Data Races”, Proceedings 1 st International
Workshop on Verification and Validation of Enterprise Information Systems (VVEIS’03), Angers, France,
2003.
[80] Miller, S., Anderson, E., Wagner, L., Whalen, M., and Heimdahl, M., “Formal Verification of Flight
Critical Software,”, AlAA Guidance, Navigation, and Control Conference, San Francisco, CA, Aug 15-1 8,
2005. Paper AIAA-2005-6431.
[81] Scherer, S., Lerda, F., Clarke, E., “Model Checking of Robotic Control Systems,” Proceedings of
ISAIRAS 2005 Conference, Munich, Germany, Sept. 5-8,2005
[82] Denney, E., Fischer, B., Schumann, J., Richardson, J., “Automatic Certification of Kalman Filters
for Reliable Code Generation”, IEEE Paper No. 1207: 0-7803-8870-4/05.
[83] Dorrnoy, F.X., ”SCADE’ The Cost and Time Effective solution for Safety Critical Software
Development”, Esterel Technologies 0 2001 - www.estere1-techno1ogies.com
[84] Santhanam, V., “Crafting an FAA - Qualifiable Compiler,” Software Tools Forum, Embry-Riddle
Aeronautical University, College of Engineering, Daytona Beach, FL, May 18-1 9, 2004.
[85] Gupta, P. and Schumann, J., “A Tool for Verification and Validation of Neural Network Based
Adaptive Controllers for High Assurance Systems”, In Proceedings High Assurance Software Engineering
(HASE). IEEE, 2004.
[86] Marjorie, D., Taylor, B., and Skias, S., “Rule Extraction From Dynamic Cell Structure Neural Network
Used in a Safety Critical Application,” Proceeding of Florida Artificial Intelligence Research Society
Conference, Miami FL, May 17-1 9, 2004.
[87] Andrews, R. and Geva, S., “RULEX & CEBP Networks As the Basis for a Rule Refinement System,”
Hybrid Problems, Hybrid Solutions, John Hallam (Ed), 10s Press, 1995, ppl-12.
[88] Andrews, R., J. Diederich, and A. B. Tickle. 1995. A survey and critique of techniques for extracting
rules from trained artificial neural networks. Knowledge-Based Systems, 8(6):373-389.
[89] Heimdahl, M.P.E, “Tool Intensive Software Development: New Challenges for Verification, Validation,
and Certification,’’ Proceedings of FAA and Embry Riddle Aeronautical University Software Tools
crrr I-
I VI LI I I,MaL‘, 2004.

